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Static analysis tools for JavaScript must strike a delicate balance, achieving the level of precision required by

the most complex features of target programs without incurring prohibitively high analysis time. For example,

reasoning about dynamic property accesses sometimes requires precise relational information connecting the

object, the dynamically-computed property name, and the property value. Even a minor precision loss at such

critical program locations can result in a proliferation of spurious dataflow that renders the analysis results

useless.

We present a technique by which a conventional non-relational static dataflow analysis can be combined

soundly with a value refinement mechanism to increase precision on demand at critical locations. Crucially,

our technique is able to incorporate relational information from the value refinement mechanism into the

non-relational domain of the dataflow analysis.

We demonstrate the feasibility of this approach by extending an existing JavaScript static analysis with a

demand-driven value refinement mechanism that relies on backwards abstract interpretation. Our evaluation

finds that precise analysis of widely used JavaScript utility libraries depends heavily on the precision at a small

number of critical locations that can be identified heuristically, and that backwards abstract interpretation is

an effective mechanism to provide that precision on demand.
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1 INTRODUCTION
Although the many dynamic features of the JavaScript programming language provide great

flexibility, they also make it difficult to reason statically about dataflow and control-flow. Several

research tools, including TAJS [Jensen et al. 2009], WALA [Sridharan et al. 2012], SAFE [Lee et al.

2012], and JSAI [Kashyap et al. 2014], have been developed in recent years to address this challenge.

A notable trend is that analysis precision is being increased in many directions, including high

degrees of context sensitivity [Andreasen andMøller 2014], aggressive loop unrolling [Park and Ryu

2015], and sophisticated abstract domains for strings [Amadini et al. 2017; Madsen and Andreasen

2014; Park et al. 2016], to enable analysis of real-world JavaScript programs.

The need for precision in analyzing JavaScript is different from other programming languages.

For example, it is widely recognized that, for Java analysis, choosing between different degrees
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of context sensitivity is a trade-off between analysis precision and performance. With JavaScript,

the relationship between precision and performance is more complicated: low precision tends

to cause an avalanche of spurious dataflow, which slows down the analysis and often renders it

useless [Andreasen and Møller 2014; Sridharan et al. 2012].

Unfortunately, uniformly increasing analysis precision to accommodate the patterns found in

JavaScript programs is not a viable solution, because the high precision that is critical for some parts

of the programs may be overkill for others. For example, the approach taken by SAFE performs

loop unrolling indiscriminately whenever the loop condition is determinate [Park and Ryu 2015],

which is often unnecessary and may be costly. Another line of research attempts to address this

problem by identifying specific syntactic patterns known to be particularly difficult to analyze and

applying variations of trace partitioning to handle those patterns more precisely [Ko et al. 2017,

2019; Sridharan et al. 2012].

In this work, we explore a different idea: instead of pursuing ever more elaborate abstract

domains, context-sensitivity policies, or syntactic special-cases, we augment an existing static

dataflow analysis by a novel demand-driven value refinement mechanism that can eliminate spurious

dataflow at critical placeswith a targeted backwards analysis. Our approach is inspired by Blackshear

et al. [2013], who introduced the use of a backwards analysis to identify spurious memory leak

alarms produced by a Java points-to analysis. We extend their technique by applying the backwards

analysis on-the-fly, to avoid critical precision losses during the main dataflow analysis, rather than

as a post-processing alarm triage tool. Also, our technique is designed to handle the dynamic

features of JavaScript that do not appear in Java.

We find that demand-driven value refinement is particularly effective for providing precise

relational information, even though the abstract domain of the underlying dataflow analysis is

non-relational. Such relational information is essential for the precise analysis of many common

dynamic language programming paradigms, especially those found in widely-used libraries like

Underscore
1
and Lodash

2
that rely heavily on metaprogramming.

An important observation that enables our approach is that the extra precision is typically only

critical at very few program locations, and that these locations can be identified during the main

dataflow analysis by inspecting the abstract values it produces.

In summary, the contributions of this paper are as follows.

• We present the idea of demand-driven value refinement as a technique for soundly eliminating

critical precision losses in static analysis for dynamic languages (Section 4). For clarity, the

presentation is based on a dataflow analysis framework for a minimal dynamic programming

language (Section 3).

• We present a separation logic-based backwards abstract interpreter, which can answer value

refinement queries to precisely refine abstract values and provide relational precision to the

non-relational dataflow analysis as an abstract domain reduction. This backwards analysis

is first described for the minimal dynamic language (Section 5) and then for JavaScript

(Section 6).

• We empirically evaluate our technique using an implementation, TAJSVR, for JavaScript

(Section 7). We find that demand-driven value refinement can provide the necessary precision

to analyze code in libraries that no existing static analysis is able to handle. For example, the

technique enables precise analysis of 266 of 306 test cases from the latest version of Lodash

(the most depended-upon package in the npm repository), all of which are beyond the reach

of other state-of-the-art analyses.

1
https://underscorejs.org/

2
https://lodash.com/
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1 function mixin(object, source) {

2 var methodNames = baseFunctions(source, Object.keys(source));

3 arrayEach(methodNames, function(methodName) {

4 var func = source[methodName];

5 object[methodName] = func;

6 if (isFunction(object)) {

7 object.prototype[methodName] = function() {

8 ...

9 return func.apply(...);

10 }

11 }

12 })

13 }

(a) Lodash’s library function mixin (simplified for brevity).

14 function baseFor(object, iteratee) {

15 var index = -1,

16 props = Object.keys(object),

17 length = props.length;

18 while (length--) {

19 var key = props[++index];

20 iteratee(object[key], key)

21 }

22 }

23

24 mixin(lodash, (function() {

25 var source = {};

26 baseFor(lodash, function(func, methodName) {

27 if (!hasOwnProperty.call(lodash.prototype, methodName)) {

28 source[methodName] = func;

29 }

30 });

31 return source;

32 }()));

(b) A use of mixin in Lodash’s bootstrapping.

Fig. 1. Excerpts from the Lodash library. Dynamic property writes that require relational information to
analyze precisely are highlighted by arrows connecting them to corresponding dynamic property reads.

1○
2○

3○

2 MOTIVATING EXAMPLE
The example program in Fig. 1 is an excerpt from Lodash 4.17.10. It consists of a library function

mixin (Fig. 1a) and a simple use of mixin (Fig. 1b) originating from the bootstrapping of the library.

The mixin function copies all methods from the source parameter into the object parameter. If

object is a function, the methods are also written to the prototype of object, such that instantiations

of object (using the keyword new) also have themethods. The function baseFor invokes the iteratee

function on each property of the given object. The mixin function is called in line 24, where the first

argument is the lodash library object and the second argument is an object, created using baseFor,

that consists of all properties of lodash that are not already in lodash.prototype. The purpose

of this call to mixin is to make each method that is defined on lodash, for example lodash.map,

available on objects created by the lodash constructor.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 140. Publication date: October 2019.
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This code contains three dynamic property read/write pairs – indicated by the labels 1○, 2○, and

3○ in Fig. 1 – where relational information connecting the property name of the read and write is

essential to avoid crippling loss of precision.

All three labelled read/write pairs are instances of a metaprogramming pattern called field copy
or transformation (FCT) [Ko et al. 2017, 2019], which consists of a property read operation x[a] and

a property write operation y[b] = v where the property name b is a function of the property name

a and the written value v is a function of the read value x[a]. This pattern is a generalization of the

correlated read/write pattern [Sridharan et al. 2012], which requires that the property names are

strictly equal. Our technique attempts to generalize such syntactic patterns by identifying imprecise

dynamic property writes semantically during the dataflow analysis. The benefits of this semantic

approach are twofold: it avoids the brittleness of syntactic patterns, and it only incurs additional

analysis cost where needed, rather than at all locations matching a syntactic pattern.

Analysis precision at dynamic property read and write operations is known to be critical for

static analysis for JavaScript programs [Andreasen and Møller 2014; Ko et al. 2017, 2019; Sridharan

et al. 2012]. If the abstract values of the property names are imprecise, then a naive analysis will mix

together the values of the different properties, which often causes a catastrophic loss of precision.

In the case of Lodash, such a naive analysis of the bootstrapping code would essentially cause all

the library functions to be mixed together, making it impossible to analyze any realistic applications

of the library.

Existing attempts to address this problem are unfortunately insufficient. WALA [Sridharan et al.

2012], SAFELSA [Park and Ryu 2015], and TAJS [Andreasen and Møller 2014] use context-sensitivity

and loop-unrolling to attempt to obtain precise information about the property names, but fail to

provide precise values of the variables methodName (at lines 4, 5, and 28) and key (at line 20).3

The CompAbs analyzer [Ko et al. 2017, 2019] takes a different approach that does not require

precise tracking of the possible values of methodName and key. Instead, it attempts to syntactically

identify correlated dynamic property reads and writes and applies trace partitioning [Rival and

Mauborgne 2007] at the relevant property read operations. However, CompAbs fails to identify any

of the three highlighted read/write pairs in Fig. 1 due to the brittleness of syntactic patterns. While

it might be possible to detect 2○ syntactically, the trace partitioning approach is insufficient for

that read/write pair, since the value in this case flows through a free variable (func) that is shared

across all partitions. As a result, CompAbs fails to analyze the full Lodash library with sufficient

precision and ends up mixing together all properties of the lodash object.

Triggering Demand-Driven Value Refinement. Our approach is able to achieve sufficient precision

for all three dynamic property read/write pairs in the example without relying on brittle syntactic

patterns to identify such pairs.

The key idea underlying our technique is to detect semantically when an imprecise property

write is about to occur during the dataflow analysis, at which point we apply a targeted value

refinement mechanism to recover the relational information needed to precisely determine which

values are written to which heap locations. More specifically, when the analysis encounters a

dynamic property write obj[p] = v and has imprecise abstract values for p and v, we decompose

the abstract value of v into a set of more precise partitions and then query the refinement mechanism

to determine, for each partition, the possible values of p. Now, instead of writing the imprecise value

of v to all the property names of obj that match the imprecise value of p, we write each partition of v

3
For example, achieving sufficient precision for methodName at lines 4 and 5 requires that the analysis can infer the precise

length and contents of the methodNames array, which is beyond the capabilities of those analyzers, even if using an (unsound)
assumption that the order of the entries of the array returned by Object.keys is known statically.
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only to the corresponding refined property names of obj, thereby recovering relational information

between p and v.

For example, suppose that the dataflow analysis reaches the dynamic property write of 3○
(at line 28) with an abstract state mapping the property name methodName to the abstract value

denoting any string and the value func to the abstract value that abstracts all functions in lodash.

We then decompose func into precise partitions – one for each of the functions – and query the

value refinement mechanism for the corresponding sets of possible property names. Recovering

that relational information, we obtain a unique function for each property name, such that the

lodash.map function is assigned to source["map"], lodash.filter is assigned to source["filter"],

etc., instead of mixing them all together. This technique handles case 1○ analogously, by detecting

the imprecision semantically at the dynamic property write.

For property read/write pair 2○, however, the value to be written is a precise function (the

anonymous function in lines 7–10) and the imprecise value func is a free variable declared in an

enclosing function. In this case, value refinement is not triggered until func is called on line 9, at

which point we apply the same value refinement technique as above and recover the necessary

relational information to precisely resolve the target of that call, as described in further detail in

Section 6.2.

Unlike abstraction-refinement techniques (see Section 8), this mechanism is able to recover rela-

tional information and use it to regain precision in the dataflow analysis without any modifications

to its non-relational abstract domain and without restarting the entire analysis.

Value Refinement using Backwards Analysis. Our value refinement mechanism is powered by a

goal-directed backwards abstract interpreter. Given a program location ℓ, a program variable y,
and a constraint ϕ, it computes a bound on the possible values of y at ℓ in concrete states satisfying

ϕ. We refer to the forward dataflow analysis as the base analysis and the backwards analysis as the

value refiner.
For example, if asked to refine the variable methodName at the location preceding line 28, under

the condition that func is the lodash.map function, our value refiner can determine that methodName

must be "map". In doing so, the value refiner provides targeted information about the relation

between func and methodName to the base analysis.

Intuitively, the value refiner works by overapproximately traversing the abstract state space

backwards from the given program location, accumulating symbolic constraints about the paths

leading to that location. The traversal proceeds along each such path until a sufficiently precise

value is obtained for the desired program variable. In this process, the value refiner takes advantage

of the current call graph and the abstract states computed so far by the base analysis. The resulting

abstract value thereby overapproximates the possible values of y at ℓ, for all program executions

where ϕ is satisfied at ℓ and that are possible according to the call graph and abstract states from

the base analysis. As we argue in Sections 4 and 7, the value refinement mechanism is sound even

though it relies on information from the base analysis that has not yet reached its fixpoint.

3 A SIMPLE DYNAMIC LANGUAGE AND DATAFLOW ANALYSIS
To provide a foundation for explaining our demand-driven value refinement mechanism, in Sec-

tion 3.1 we define the syntax and concrete semantics of a small dynamic language. This language

is designed for simplicity and clarity of presentation and is meant to illustrate some of the core

challenges in dynamic language analysis without the complexity that arises from a tested core

calculus for JavaScript such as λJS [Guha et al. 2010]. We then define our analysis over this minimal

language in Section 3.2 and describe the extensions needed to handle the full JavaScript language

in Section 6.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 140. Publication date: October 2019.
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variables x ,y, z ∈ Var
primitives p ∈ Prim ::= undef | true | false

| 0 | 1 | 2 | . . .

| "foo" | "bar" | . . .

statements s ∈ Stmt ::= x={} | x=y | x=p

| x=y ⊕ z | assume x

| x[y]=z | x=y[z]

operators ⊕ ::= + | − | = | , | . . .

locations ℓ ∈ Loc
control edges t ∈ Trans ::= ℓ →s ℓ

′

Fig. 2. Concrete syntax for a simple dynamic language.

object addresses a ∈ Addr
memory addresses m ∈ Mem = Var ∪ (Addr × Prim)

values v ∈ Val = Addr ∪ Prim
states σ ∈ State = Mem ↪→ Val

[[·]] : Stmt → State ↪→ State
[[x={}]](σ ) = σ [x 7→ fresh(σ )]

[[x=y]](σ ) = σ [x 7→ σy]

[[x=p]](σ ) = σ [x 7→ p]

[[x=y ⊕ z]](σ ) = σ [x 7→ σy ⊕ σz]

[[assume x]](σ ) = σ if σx = true

[[x[y]=z]](σ ) = σ [(σx ,σy) 7→ σz] if σx ∈ Addr
and σy ∈ Prim

[[x=y[z]]](σ ) = σ [x 7→ σ (σy,σz)]

Fig. 3. Denotational semantics and concrete domains.

3.1 A Simple Dynamic Language
The syntax and denotational semantics of our core dynamic language are shown in Fig. 2 and Fig. 3.

A program in this language is an unstructured control-flow graph represented as a pair ⟨ℓ0,T ⟩ of
an initial location ℓ0 ∈ Loc and a set of control-flow edgesT ⊆ Trans. A program location ℓ ∈ Loc is
a unique identifier. A memory addressm ∈ Mem is either a program variable x or an object property

(a,p) where a is the address of an object and p is a primitive value. Concrete states σ ∈ State are
partial functions from memory addresses to values, which are either object addresses or primitives.

We write ε for the empty state and use the notation σ [m 7→ v] to denote a state identical to σ
except at locationm where v is now stored, and σm to denote the value stored atm in σ or undef if

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 140. Publication date: October 2019.
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â ∈�Addr , Â ⊆ �Addr
p̂ ∈�Prim =

⊥Prim

⊤Prim

· · · undef true 0 "foo" "bar" · · ·

m̂ ∈�Mem = Var ∪ (�Addr × Prim)
v̂ ∈ V̂al = P(�Addr) ×�Prim

σ̂ ∈�State = �Mem→ V̂al
L = Loc →�State

Fig. 4. Dataflow analysis lattice.

no such value exists. We also assume a helper function fresh(σ ) that returns an object address that

is fresh with respect to state σ .
The denotation of a statement s is a partial function [[s]] from states to states. The collecting

semantics of a program ⟨ℓ0,T ⟩ is defined in terms of the denotational semantics as a function

[[_]]⟨ℓ0,T ⟩ : Loc → P(State) that captures the reachable state space of the program, as the least

solution to the following constraints:

ε ∈ [[ℓ0]]⟨ℓ0,T ⟩

∀σ ∈ [[ℓ]]⟨ℓ0,T ⟩ and ℓ →s ℓ
′ ∈ T : [[s]](σ ) ∈ [[ℓ′]]⟨ℓ0,T ⟩

The first constraint says that the empty state ε is reachable at the initial location. The second

constraint defines the successor states according to the denotational semantics.

3.2 Dataflow Analysis
We now describe a basic dataflow analysis for this minimal dynamic language, which we will extend

in Section 4 with support for demand-driven value refinement.

The analysis is expressed as a monotone framework [Kam and Ullman 1977] consisting of a

domain of abstract states and monotone transfer functions for the different kinds of statements.

Programs can then be analyzed by a fixpoint solver computing an overapproximate abstract state

for each program location.
4

The analysis domain we use is the lattice L described in Fig. 4, which is a simplified version of

the one used by TAJS [Jensen et al. 2009]. For each program location, an element of L provides

an abstract state, which maps abstract memory addresses to abstract values. Object addresses are

abstracted using, for example, allocation-site abstraction [Chase et al. 1990]. The domain of abstract

values, V̂al, is a product of two sub-domains describing references to objects and primitive values,

respectively, using the constant propagation lattice to model the latter.

We write â ≺1 v̂ if the first component of the abstract value v̂ contains the abstract object address

â, and similarly, p̂ ≺2 v̂ means that the concretization of the abstract primitive value p̂ is a subset

of the concretization of v̂ . We use v̂1 ⊔ v̂2 to denote the least upper bound of v̂1 and v̂2.
The semantics of each control edge ℓ →s ℓ

′
is modeled abstractly by the transfer function

Tℓ→s ℓ′ :
�State → �State . When the statement s is a dynamic property write x[y]=z, the transfer

4
We assume the reader is familiar with the basic concepts of abstract interpretation [Cousot and Cousot 1992], including

the terms abstraction, concretization, collecting semantics, and soundness.
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ℓ1 ℓ2 ℓ3

t = x[p] y[p] = t

Fig. 5. A program fragment with a correlated property read/write pair.

function is defined as follows:

Tℓ→s ℓ′(σ̂ )(m̂) =

{
σ̂m̂ ⊔ σ̂z if m̂ = (â,p) ∧ â ≺1 σ̂x ∧ p ≺2 σ̂y

σ̂m̂ otherwise

In other words, the analysis models such an operation by weakly
5
updating all the affected abstract

memory addresses with the abstract value of z. Due to the limited space, we omit descriptions of

the remaining analysis transfer functions for other kinds of statements; it suffices to require that

they soundly overapproximate the semantics [Cousot and Cousot 1977].

The refinement mechanism directly involves the fixpoint solver. As customary in dataflow

analysis, we assume the fixpoint solver uses a worklist algorithm to determine which locations to

process next each time a transfer function has been applied [Kildall 1973]. A worklist algorithm

relies on a map dep : Loc → P(Loc), such that dep(ℓ) contains all direct dependents of ℓ, in our

case the successors {ℓ′ | ℓ →s ℓ
′ ∈ Trans}. For a worklist algorithm to be sound, it must add all the

locations dep(ℓ) to the worklist when the abstract state at ℓ is updated.

Example. Fig. 5 shows a program fragment with a correlated property read/write pair like

in Section 2. Assume σ̂ is an abstract state where x and y point to distinct objects (âx and ây,
respectively), p is any primitive value, the x object has three properties (named "a", "b", and "c")

with different values, and the y object is empty:

σ̂x = ({âx},⊥Prim)

σ̂y = ({ây},⊥Prim)

σ̂p = (∅,⊤Prim)

σ̂ (âx, "a") = ({âxa},⊥Prim)

σ̂ (âx, "b") = ({âxb},⊥Prim)

σ̂ (âx, "c") = (∅,⊤Prim)

σ̂ (ây,p) = (∅,⊥Prim) for all p ∈ Prim

The transfer function for t = x[p] with this abstract state at initial program location ℓ1 yields
an abstract state at ℓ2 that maps t to ({âxa, âxb},⊤Prim). Next, the transfer function for y[p] = t as

defined above results in an abstract state at ℓ3 where every property of the abstract object ây has
the same abstract value as t, meaning that they all may point to any of the two abstract objects âxa
and âxb and have any primitive value. Consequently, the analysis result is very imprecise. In the

following section, we explain how the basic dataflow analysis can be extended with demand-driven

value refinement to avoid the precision loss.

4 DEMAND-DRIVEN VALUE REFINEMENT
In this section, we introduce the notion of a value refiner (Section 4.1), discuss when and how to

apply value refinement during the base analysis (Section 4.2), and explain how to integrate a value

refiner into the base analysis in a way that allows the value refiner to benefit from the abstract

states that are constructed by the base analysis (Section 4.3).

5
Our implementation for JavaScript uses a more expressive heap abstraction that permits strong updates [Chase et al. 1990;

Jensen et al. 2009] in certain situations.
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4.1 Value Refinement
A value refiner is a function

R : Loc × Var × Constraint → P(V̂al)

that, given a program location ℓ ∈ Loc, a program variable y ∈ Var , and a constraint ϕ ∈

Constraint = Var × V̂al yields a set of abstract values that are possible for y at ℓ in states that satisfy

ϕ. We refer to an invocation of the value refiner function by the base analysis as a refinement query.
For the refinement queries we need, a constraint is simply a pair of a program variable and an

abstract value, written z 7→ v̂ , specifying that the variable z has value v̂ .
We require R to be sound in the sense that it overapproximates all possible behaviors of the

program according to the collecting semantics: for every state σ ∈ [[ℓ]]⟨ℓ0,T ⟩ where ℓ is a location
in the program ⟨ℓ0,T ⟩ and the abstraction of σ satisfies the constraint ϕ, the value σy is in the

concretization of an abstract value in R(ℓ,y,ϕ) for any y.
In Section 5 we present a specific value refiner; for the remainder of the current section we can

think of the value refiner as a black-box component with the above properties.

4.2 Using Value Refinement in Dataflow Analysis
Value refinement can in principle be invoked whenever the base analysis detects that a potentially

critical loss of precision is about to happen, to provide more precise abstract values. As discussed

in Section 2, such precision losses often occur in connection with dynamic property writes, so we

here focus on that kind of operation. In Section 6.2, we consider value refinement also at variable

read operations.

First, we define a helper function Part : V̂al → P(V̂al) that partitions an abstract value into a set

of abstract values, each containing at most one abstract memory address:

Part(Â, p̂) ={ ({â},⊥Prim) | â ∈ Â } ∪

{
{(∅, p̂)} if p̂ , ⊥Prim

∅ otherwise

Continuing the example from Section 3.2, we have:

Part({âxa, âxb},⊤Prim) = {({âxa},⊥Prim), ({âxb},⊥Prim), (∅,⊤Prim)}

We now incorporate value refinement into the base analysis by replacing the ordinary transfer

function Tℓ→s ℓ′ from Section 3.2 by a new transfer function T VR
ℓ→s ℓ′

. The domain of the base

analysis remains unchanged (unlike traditional abstraction refinement techniques). The new transfer

function is defined as follows when s is a dynamic property write statement x[y]=z:

T VR
ℓ→s ℓ′

(σ̂ )(m̂) =


σ̂m̂ ⊔ V (σ̂ , ℓ,y, z,p) if ⊤Prim ≺2 σ̂y ∧ |Part(σ̂z)| > 1

∧ m̂ = (â,p) ∧ â ≺1 σ̂x

Tℓ→s ℓ′(σ̂ )(m̂) otherwise

where the abstract value being written is

V (σ̂ , ℓ,y, z,p) =
⊔ {

ẑ ∈ Part(σ̂z)
�� ∃ŷ ∈ R(ℓ,y, z 7→ ẑ) : p ≺2 ŷ

}
This modified transfer function captures some of the key ideas of our approach, so we carefully

explain each part of the definition. The first case of the transfer function definition shows when and

how value refinement is used, and the second case simply falls back to the ordinary transfer function.

Value refinement is applied when the analysis has an imprecise value fory (i.e.,⊤Prim ≺2 σ̂y) and an
imprecise value for z that is partitioned nontrivially (i.e., |Part(σ̂z)| > 1), provided that the desired

abstract memory address m̂ denotes an object property (i.e., m̂ = (â,p) for some abstract object
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address â and property name p). The abstract value V (σ̂ , ℓ,y, z,p) being written is then computed

by issuing a refinement query R(ℓ,y, z 7→ ẑ) for each partition ẑ of σ̂z (i.e., ẑ ∈ Part(σ̂z)). Each of

the resulting abstract values ŷ describes a possible value of y under the constraint that z has value
ẑ. In this way, rather than writing the imprecise abstract value σ̂z to all properties of â, the analysis
writes each of the more precise abstract values ẑ to the corresponding refined property name p
that matches ŷ (i.e., p ≺2 ŷ).

Example. Recall that in the example from Section 3.2, at the dynamic property write y[p] = t

the base analysis has imprecise abstract values for the property name p and for the value t being

written. More specifically, Part partitions the latter into three more precise abstract values as shown

above. This means that the condition is satisfied for using value refinement, so the modified transfer

function then issues three refinement queries. Using the value refiner that we present in Section 5

yields the following results:

R(ℓ2, p, t 7→ ({âxa},⊥Prim)) = {(∅, "a")}

R(ℓ2, p, t 7→ ({âxb},⊥Prim)) = {(∅, "b")}

R(ℓ2, p, t 7→ (∅,⊤Prim)) = {(∅, "c")}

The transfer function then writes each refined abstract value only to the relevant property of ây,
instead of mixing them all together like the ordinary transfer function. For example, the resulting

state maps (ây, "a") to ({âxa},⊥Prim). The base analysis then proceeds with this more precise

abstract state.

Notice that the base analysis has only one abstract value per abstract memory address and

program location, whereas the value refiner returns a set of abstract values at each refinement

query. In the example described above, each of the refinement query results contains only one

abstract value, but when applying our technique to the examples from Section 2, we benefit from

the possibility that R can return multiple abstract values: Some methods of the lodash object are

accessible via multiple names, for example lodash.entries and lodash.toPairs are aliases. In this

case, querying the value refiner for the possible property names given that the value being written

is that specific function, the result can be expressed as the set of the two strings "entries" and

"toPairs" instead of the less precise single abstract value representing all possible strings.

4.3 Using the Base Analysis During Refinements
The value refiner can leverage the base analysis state to allow for more efficient implementation. For

the dataflow analysis defined in Section 3.2, the refiner can read partially-computed abstract states;

in our JavaScript implementation (see Section 6.1), the refiner also uses the partially-computed call

graph.We argue that this is sound even though the base analysis has not yet reached a fixpoint when

the refiner is invoked. This extended kind of a value refiner is denoted RX where X : Loc →�State
is a lattice element of the base analysis.

For the example from Section 3.2, RX can obtain the value of the variable x at ℓ1 simply by

looking up X (ℓ1)(x) from the base analysis, without needing to traverse all the way back to where

the value of x was created. Similarly, for analysis of JavaScript, using the call graph available from

the base analysis allows the value refiner to narrow its exploration when stepping from function

entry points to call sites.

For this mechanism to retain analysis soundness, we slightly modify the base analysis. Recall

from Section 3.2 that the base analysis relies on a worklist of program locations. Now, whenever a

refinement query is triggered by the base analysis at some program location ℓ and the value refiner
reads from the abstract state X (ℓ′), we extend the dep map to record that ℓ depends on ℓ′. In this
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symbolic variables x̂, ŷ, ẑ, res ∈ V̂ar

symbolic expressions ê ∈�Expr ::= x̂ | v̂ | ê1 ⊕ ê2
symbolic stores φ ∈�Store ::= ˆh ∧ π | φ1 ∨ φ2

heap constraints
ˆh ::= true | unalloc(x̂ ) | x 7→ x̂ | x̂1[x̂2] 7→ x̂3 | ˆh1 ∗ ˆh2

pure constraints π ::= true | ê | π1 ∧ π2
valuations η ∈ Valua : V̂ar → Val

(a) Abstractions for value refinement. Recall from Section 3 that ⊕ ranges over binary operators, x over
program variables, and v̂ over abstract values.

eval : (�Expr × Valua) → P(Val)
eval(x̂, η) = {ηx̂ }

eval(v̂, η) = γval(v̂)

eval(ê1 ⊕ ê2, η) =

{
v1 ⊕ v2

���� v1 ∈ eval(ê1, η)
∧ v2 ∈ eval(ê2, η)

}
(b) Abstract expression evaluation function eval. The notation γval(v̂) refers to the concretization of v̂ .

γ ( ˆh ∧ π ) = γ ( ˆh) ∩ γ (π )

γ (φ1 ∨ φ2) = γ (φ1) ∪ γ (φ2)

γ (true) = State × Valua

γ (ê) =
{
(σ , η)

��
true ∈ eval(ê, η)

}
γ (π1 ∧ π2) = γ (π1) ∩ γ (π2)

γ (unalloc(x̂ )) =
{
(σ , η)

�� ∀v : σ (η(x̂ ), v) = undef
}

γ (x 7→ x̂ ) =
{
(σ , η)

�� σx = η(x̂ )}
γ (x̂1[x̂2] 7→ x̂3) =

{
(σ , η)

�� σ (η(x̂1), η(x̂2)) = η(x̂3)}
γ ( ˆh1 ∗ ˆh2) =

{
(σ1 ⊎ σ2, η)

���� (σ1, η) ∈ γ ( ˆh1) ∧ (σ2, η) ∈ γ ( ˆh2)∧ dom(σ1) ∩ dom(σ2) = ∅

}
(c) Concretizations γ for symbolic stores φ, heap constraints ˆh, and pure constraints π . We denote by ⊎ the
union of two partial functions with disjoint domains.

Fig. 6. Syntax and concretizations of abstractions used for value refinement.

way, if the abstract state at ℓ′ changes later during the base analysis, the result of the invocation of

the value refiner is invalidated and eventually recomputed.
6

As such, the soundness criterion from Section 4.1 for the value refiner needs to be adjusted by

weakening the soundness requirement so that the value refiner needs only overapproximate those

concrete program behaviors that are abstracted by the current base analysis state. We say that

a trace ℓ0 →s1 ℓ1 →s2 · · · →sn ℓn is abstracted by a base analysis state X ∈ L if, for all k ≤ n,
([[sk ]] ◦ [[sk−1]] ◦ · · · ◦ [[s1]])(ε) is in the concretization of X (ℓk ). Then, a refiner RX is sound if σy is

in the concretization of an abstract value in RX (ℓ,y,ϕ) for every concrete state σ ∈ [[ℓ]]⟨ℓ0,T ⟩ that
satisfies ϕ and is the final state of a trace that is abstracted by X and ends at ℓ.

6
To improve performance, our implementation actually tracks these extra dependencies in a more fine-grained manner, as

described in Section 6.3.
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Conseqence

φ ′
2
⇒ φ2 ⟨φ ′

2
⟩ s ⟨φ ′

1
⟩ φ1 ⇒ φ ′

1

⟨φ2⟩ s ⟨φ1⟩

Frame

⟨ ˆh′
1
∧ π ′⟩ s ⟨ ˆh1 ∧ π ⟩ mod(s) ∩ fv( ˆh2) = ∅

⟨ ˆh′
1
∗ ˆh2 ∧ π

′
〉
s
〈
ˆh1 ∗ ˆh2 ∧ π

〉
Disjunction

⟨φ ′l ⟩ s ⟨φl ⟩ ⟨φ ′r ⟩ s ⟨φr ⟩〈
φ ′l ∨ φ

′
r
〉
s
〈
φl ∨ φr

〉 BinOp

ˆh = y 7→ ŷ ∗ z 7→ ẑ〈
ˆh ∧ π ∧ x̂ = ŷ ⊕ ẑ

〉
x = y ⊕ z〈

ˆh ∗ x 7→ x̂ ∧ π
〉

NewObj〈
unalloc(x̂) ∧ π ∧

(
∧i ẑi = undef

)〉
x = {}〈

x 7→ x̂ ∗
(
∗i x̂[_] 7→ ẑi

)
∧ π

〉
Alias〈
(y 7→ ŷ ∧ π )[ŷ/x̂]

〉
x = y〈

x 7→ x̂ ∗ y 7→ ŷ ∧ π
〉

ReadProp

ˆh = y 7→ ŷ ∗ z 7→ ẑ ∗ ŷ[ẑ] 7→ x̂ ′〈
( ˆh ∧ π )[x̂ ′/x̂]

〉
x = y[z]〈

ˆh ∗ x 7→ x̂ ∧ π
〉

Assume

ˆh = x 7→ x̂〈
ˆh ∧ x̂ ∧ π

〉
assume x

〈
ˆh ∧ π

〉
WriteProp

ˆh = x 7→ x̂ ∗ y 7→ ŷ ∗ z 7→ ẑ〈
( ˆh ∧ π )[ẑ/ẑ ′]

〉
x[y] = z

〈
ˆh ∗ x̂[ŷ] 7→ ẑ ′ ∧ π

〉 Constant〈
true ∧ π ∧ x̂ = p

〉
x = p

〈
x 7→ x̂ ∧ π

〉
Fig. 7. Rules for refutation-sound backwards abstract interpretation. We denote the set of memory locations
possibly modified by a statement s by mod(s), the free variables of a heap constraint ˆh by fv( ˆh), and the
substitution of symbolic variable x̂ for ŷ in a symbolic store φ by φ[x̂/ŷ]. To simplify the presentation, without
loss of generality, we assume the program has been normalized so that any statement involving multiple
program variables uses distinct variables.

Soundness. Since we require that the refiner RX is sound with respect to those traces abstracted

by the base analysis state, T VR
ℓ→s ℓ′

is sound when that base analysis state abstracts the full concrete

semantics, which is guaranteed at a fixpoint. If the base analysis state does not yet abstract the full

concrete collecting semantics, then RX ’s refinements are only sound so long as the information they

read from the base analysis state is unchanged. However, by adding additional dependency edges

wherever such a read occurs, we ensure that any refinement query that used stale information will

be invalidated and recomputed. We refer to Appendix A for a more detailed discussion.

5 BACKWARDS ABSTRACT INTERPRETATION FOR VALUE REFINEMENT
In this section, we define a sound value refiner R← based on goal-directed backwards abstract

interpretation. The value refiner R← works by exploring backwards from the abstract state where

it was triggered, overapproximating the set of states from which that state is reachable using an

abstract domain based on separation logic constraints. We also detail the construction of a refiner

R←X that extends R← to access base analysis abstract state during value refinement.

This value refiner is goal-directed in the sense that it only traverses the subset of the control-flow

graph relevant to a given refinement query and only computes transfer functions that directly

affect its constraints. As such, it is quite precise with respect to a fixed property of interest without

incurring the cost of applying that same precision to the full program.
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5.1 Abstract Domain
The abstract domain of R← is a constraint language over memory states. The syntax and semantics

of this constraint language are given in Fig. 6. A symbolic store φ is a disjunctive normal form

expression over heap constraints
ˆh and pure constraints π . Each clause represents a symbolic store,

while the top-level disjunction permits case-splitting.

Heap constraints
ˆh are defined using an intuitionistic separation logic [Ishtiaq and O’Hearn 2001]

wherein a single-cell heap constraint (i.e., x 7→ x̂ or x̂1[x̂2] 7→ x̂3) holds for any heap containing

that cell, not just for those heaps comprised only of that single cell. This results in a monotonic

logic in which heap constraints
ˆh are preserved under heap extension. That is, if an intuitionistic

separation logic assertion
ˆh holds for some concrete state σ , then ˆh must also hold for all extensions

σ ′ of σ . This succinctly supports a goal-directed analysis, in which we want to infer information

only about some sub-portion of the heap.

Pure constraints π are either symbolic expressions ê or conjunctions thereof; the pure constraint
ê holds whenever it could possibly evaluate to true according to the abstract expression evaluation

function eval. By defining pure constraints over abstract values v̂ rather than concrete values v , we
will be able to seamlessly integrate information from the abstract state of the base analysis during

refinement, as discussed in Section 4.3.

We denote byφ∧φ ′ conjunction and re-normalization to DNF after alpha-renaming free symbolic

variables in φ ′ such that all memory addresses are mapped to the same symbolic variable by both

symbolic stores. For example, (x 7→ x̂ ∧ x̂ > 0)∧(x 7→ ŷ∧ŷ < 5) reduces to x 7→ x̂ ∧(x̂ > 0∧ x̂ < 5).

5.2 Backwards Abstract Interpretation
We define the analysis in terms of refutation sound [Blackshear et al. 2013] Hoare triples of the

form ⟨φ⟩ s ⟨φ ′⟩, which are given in Fig. 7.

Refutation soundness is similar to the standard definition of soundness for Hoare logic (i.e.,

partial correctness), but in the opposite direction: a triple is refutation sound if and only if

((σ ′,η) ∈ γ (φ ′) ∧ [[s]](σ ) = σ ′) ⇒ (σ ,η) ∈ γ (φ) holds for all σ , σ ′, and η. That is, a triple is refuta-
tion sound if any concrete run through s ending in a state satisfying the postcondition φ ′ must

have started in a state satisfying the precondition φ.
These triples are best read from postcondition to precondition, since that is the natural direction

in which to understand refutation soundness and the direction in which the analysis actually

applies them.

The first three rules in Fig. 7 are integral structural components of the system that are not

specific to any particular statement form. The Conseqence rule allows the analysis to strengthen

preconditions and weaken postconditions, making explicit our notion of refutation soundness and

allowing other rules to materialize heap cells as needed; Frame enables local heap reasoning; and

Disjunction splits reasoning over each disjunct of a symbolic store.

The remaining rules abstract the concrete semantics of their respective statement forms. Read-

Prop, WriteProp, and Alias transfer any postcondition constraints on their left-hand-side to

precondition constraints on their right-hand-side; NewObj constrains any properties of the al-

located object to be undef and asserts that the object is now unallocated, which ensures (by

separation) that no such properties can be framed out by Frame; BinOp and Constant use pure

equality constraints to precisely model the concrete semantics; and Assume directly encodes the

assumption into a pure constraint.

Our value refiner R← : Loc × Var × Constraint → P(V̂al) is based on backwards abstract

interpretation using the judgment ⟨φ⟩ s ⟨φ ′⟩. We introduce a distinguished symbolic variable res

to represent the value that is being refined as we move backwards through the program. Note that
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R← is implicitly parameterized by a specific program ⟨ℓ0,T ⟩, but does not have access to abstract

states from the base analysis as discussed in Section 4.3; integration with the base analysis will be

detailed in Section 5.3.

Given a refinement query R←(ℓ,x ,y 7→ v̂), we first encode the inputs as a symbolic store

x 7→ res ∗ y 7→ ŷ ∧ ŷ = v̂ . Then, we algorithmically apply the Hoare triples from Fig. 7 backwards

from ℓ in T to compute a symbolic store for each backwards-reachable location, using a standard

worklist algorithm to ensure correctness and minimize redundant work and applying the widening

technique of Blackshear et al. [2013] to compute fixpoints over loops.

Due to refutation soundness, it is sound for the backwards abstract interpreter to stop at any

point. Since each successive application of a rule from Fig. 7 computes an abstract precondition

that a concrete execution must satisfy to reach the given abstract postcondition, the constraints on

res grow more precise the more of the program is analyzed but are overapproximate every step of

the way. As such, the stopping criterion of R← can be tuned, offering a tradeoff between refinement

precision and performance. In our implementation for JavaScript, we stop the backwards traversal

along a path if sufficient precision has been reached for the refinement variable res, meaning that

its abstract value is either a singleton set of object addresses or a non-⊤Prim abstract primitive.

This analysis continues either until we reach a least fixpoint in the symbolic store domain

(partially ordered under implication) or the stopping criterion is fulfilled for all symbolic stores

in the worklist. At that point, we compute an upper bound on the value of res in all remaining

symbolic stores and return the corresponding set of abstract values.

Example. Recall that the base analysis issues three refinement queries for the example from

Section 4.2, the first one being R←(ℓ2, p, t 7→ ({âxa},⊥Prim)). This query is encoded as the initial

symbolic store p 7→ res ∗ t 7→ t̂ ∧ t̂ = ({âxa},⊥Prim) at the program location ℓ2. From there, R←

uses the Conseqence and ReadProp rules from Fig. 7 to construct the triple〈
p 7→ res ∗ x 7→ x̂ ∗ x̂[res] 7→ t̂ ∧ t̂ = ({âxa},⊥Prim)

〉
t = x[p]〈

p 7→ res ∗ t 7→ t̂ ∧ t̂ = ({âxa},⊥Prim)
〉

which precisely models the dynamic property read t= x[p] and yields a precondition symbolic

store expressing a refinement of the value of p when x[p] has value ({âxa},⊥Prim). We continue this

example in the following section to show how the value refiner reaches the final result {(∅, "a")}.

Soundness. By refutation soundness, applying the Hoare rules from Fig. 7 backwards soundly

overapproximates the states from which the refinement location is reachable. By exhaustively

tracking the value of res on all backward abstract paths from the refinement location, R← therefore

computes an overapproximation of the variable being refined with respect to the concrete collecting

semantics. We refer to Appendix B for a proof sketch.

5.3 Integration of Base Analysis State
We now extend R← to leverage abstract state from the base analysis as described in Section 4.3,

thereby constructing a value refiner R←X that is parameterized by a base analysis abstract state X .
In particular, we describe a procedure by which a symbolic store φ and base analysis state X can be

combined to compute a refinement that the symbolic store φ is not able to on its own. Essentially,

when R←X has a symbolic store φ refining a property’s name under a constraint on that property’s

value, it accesses the base analysis state to determine possible property names satisfying those

constraints and then returns that set. We refer to this procedure as property name inference.
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In more detail, this mechanism works as follows. If, during the backwards abstract interpretation

as described for R← in the previous section, the current symbolic store φ matches

x 7→ x̂ ∗ x̂[res] 7→ ŷ ∗ ˆh ∧ ŷ = v̂ ∧ π

for some x , x̂ , ŷ, v̂ , undef, ˆh, and π , then property name inference is applied. Intuitively, this

condition means that the abstract value of the res property of x is v̂ , which allows R←X to determine

the desired set of property names by reading the base analysis state at that location. We define a

function infer-prop-names to compute that refinement:

infer-prop-names(φ, σ̂ ) =
{
p

���� ∃â : â ≺1 σ̂x ∧ (â,p) ∈ dom(σ̂ )
∧ σ̂ (â,p) ⊓ v̂ , (∅,⊥Pr im)

}
Intuitively, infer-prop-names checks each property (â,p) on the object x , returning the names p of

those properties whose abstract value intersects with v̂ .
The property name inference mechanism thus refines the abstract names of object properties.

Our implementation uses the same idea to also refine abstract values of properties, which we return

to in Section 6.2.

Example. Continuing the example from Section 5.2, φ is of the form specified above, so the

analysis applies property name inference to compute a refinement for p. Computing the refinement

infer-prop-names(φ,X (ℓ1)) gives the names of those properties in X (ℓ1) that satisfy φ, meaning

that the property value intersects with ({âxa},⊥Prim). In this case, "a" is the only such property

name according to the value of X (ℓ1) given in Section 3.2, so the refiner returns {(∅, "a")}. In this

simple example, a single step backwards suffices before the stopping criterion is fulfilled, due to

the integration of the base analysis state, but multiple steps are often needed in practice.

6 INSTANTIATION FOR JAVASCRIPT
Our implementation, TAJSVR,

7
generalizes to JavaScript the ideas presented in the previous sections

for the simple dynamic language. As base dataflow analysis TAJSVR uses the existing tool TAJS,

extended as explained in Section 4.3. The other main component of the implementation is the value

refiner, built from scratch and based on the design given in Section 5. The two components are

implemented separately – the base analysis in Java (approximately 2500 lines of code on top of

TAJS) and the refiner in Scala (approximately 2400 lines of code) – and communicate only through

a minimal interface that allows the base analysis to issue refinement queries and the refiner to read

partially-computed base analysis state, request control-flow information to traverse the program, or

perform property name inference as described in Section 5.3. The implementation and experimental

data are available at https://www.brics.dk/TAJS/VR.

6.1 A Value Refiner for JavaScript
Many JavaScript language features that are not directly in the minimal dynamic language are

straightforward to handle. However, for-in loops, interprocedural control flow, and prototype-

based inheritance are nontrivial and require some additional machinery in the backwards analysis.

for-in loops. In order to handle for-in loops efficiently, the refiner analyzes the loop body under

contexts corresponding to the properties of the loop object in the base analysis state.

That is, upon reaching the exit of a for-in loop, the value refiner queries the base analysis state

for a set of property names on the loop object, generating one context for each of them and one

additional context as a catch-all for all other property names. Then, it analyzes the loop body once

per context before joining the results and continuing backwards from the loop entry.

7TAJS with demand-driven Value Refinement
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Interprocedural control flow. In order to soundly navigate interprocedural control flow in the

value refinement analysis, we rely on the partially-computed call graph from the base analysis

while maintaining a stack of return targets where possible. That is, when reaching a call site,

the analysis pushes that location (along with any locally-scoped constraints) onto a stack before

jumping to the exit of all possible callees in the base analysis call graph. Then, upon reaching a

function entry point, it pops a stack element and jumps to the corresponding call site or, if the stack

is empty, jumps to all callers of the current function in the base analysis call graph. When using

an unbounded stack, it analyzes function calls fully context-sensitively and therefore relies on a

timeout to ensure termination, but k-limiting the stack height would ensure termination (without

a timeout) while analyzing function calls with k-callstring context sensitivity.

Prototype-based inheritance. Handling prototype-based inheritance is more complicated since the

semantics of a dynamic property access depend not only on the values of the object and property

name but also on the prototype relations and properties of other objects in the program.

Our implementation reasons about prototype-based inheritance by introducing “prototype

constraints” at property reads to keep track of prototype relationships between relevant symbolic

variables. These constraints are manipulated as the analysis evaluates other property writes and

modifications to the prototype graph; for example, when encountering a property write under a

prototype constraint, the analysis splits into a disjunction on whether or not the write is to the

memory location whose read produced the prototype constraint. This allows the analysis to reason

about prototype semantics, even in programs that dynamically modify the prototype graph.

6.2 Functions with Free Variables
As mentioned in Section 2, the dynamic property read/write pair 2○ in the example in Fig. 1a

differs from 1○ and 3○, because the values flow from the property read to the associated write via a

free variable that is declared in an enclosing function. It is critical that the analysis does not mix

together the different functions of the source object. For example, in clients of Lodash, the function

value lodash([1, 2]).map is the one created in line 7 where methodName is "map". If the program

contains a call to that function, then at the call func.apply(...) in line 9, the analysis must have

enough precision to know that func is the same function as source["map"].

We achieve that degree of precision by adjusting the base analysis as follows. At the dynamic

property write in line 7, the analysis detects that in the current abstract state, the property name

(i.e. methodName) is imprecise and that the value being written denotes a function that contains a

free variable with an imprecise value as noted in Section 2. The analysis then annotates the abstract

value being written with the memory address of methodName and the current program location ℓ7
for later use. Every property of object.prototype then has this single annotated abstract value.

When the analysis later encounters a property read operation that yields such an annotated

value, the value is modified to reflect the property name, which can now be resolved. For example,

at an expression lodash([1, 2]).map, the resulting abstract value describes a function that has

been created at a point where the value of methodName was "map".

If that function is called, the analysis reaches line 9 and then issues the refinement query

R←X (ℓ7, func, methodName 7→ "map") to learn the possible values of func at line 7 under the constraint

that methodName has the value "map". When the value refiner reaches the dynamic property read in

line 4 during the backwards analysis, it can use the base analysis state to read source["map"] (as

hinted in Section 5.3), which provides the desired precise value for func.

Note that with this mechanism, our base analysis does not only trigger refinement at dynamic

property writes as described in Section 4.2, but also for variable reads of imprecise free variables as

described above.
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6.3 Performance Improvements
Recall from Section 4.3 that a location ℓ is added to the worklist when a refinement query at ℓ
has accessed the abstract state X (ℓ′) and that abstract state has changed. Our implementation

uses a more fine-grained notion of dependencies by keeping track of the individual dataflow facts

instead of entire abstract states, such that ℓ is only added to the worklist when the state change at

ℓ′ invalidates the dataflow facts that were previously accessed from ℓ′.
Additionally, our implementation caches refinement query results, exploiting the fact that the

result of a query RX (ℓ,y,ϕ) depends only on the three parameters and the dataflow facts in X that

are accessed by the value refiner.

7 EVALUATION
We evaluate the demand-driven value refinement technique by considering the following research

question:

Can TAJSVR analyze programs that other state-of-the-art tools are unable to analyze

soundly and with high precision?

To provide insights into why the mechanism is effective when analyzing real-world programs, we

also investigate how many value refinement queries are issued, how often the value refiner is able

to produce more precise results than the base analysis, and how much analysis time is typically

spent on value refinement.

7.1 Comparison with State-of-the-Art Analyzers
We compare TAJSVR with two existing state-of-the-art analysis tools: TAJS [Andreasen and Møller

2014; Jensen et al. 2009] and CompAbs [Ko et al. 2017, 2019]. TAJS is the base dataflow analysis upon

which TAJSVR is built; it is designed for JavaScript type analysis but performs no value refinement.

CompAbs – described in further detail in Sections 2 and 8 – is a tool built on top of SAFE [Lee et al.

2012] that attempts to syntactically identify problematic dynamic property access patterns and

applies trace partitioning at those locations.

We evaluate each tool on three sets of benchmarks: a series of micro-benchmarks designed

as minimal representative examples of dynamic property manipulation patterns, a collection of

evaluation suites drawn from other JavaScript static analysis research papers, and the unit test suites

of two popular JavaScript libraries that are unanalyzable by the existing static analysis tools. All

experiments have been performed on an Ubuntu machine with 2.6 GHz Intel Xeon E5-2697A CPU

running a JVM with 10 GB RAM. Collectively, the results indicate that the relational information

provided by value refinement is critical for the analysis of challenging JavaScript programs.

Micro-Benchmarks. Following the approach of Ko et al. [2017], we first evaluate TAJSVR on a

series of small benchmarks containing dynamic property access patterns known to be difficult for

static analysis. Source code for these benchmarks can be found in Ko et al. [2017] (CF, CG, AF, and

AG) or at https://www.brics.dk/TAJS/VR (M1, M2, and M3).

The results, shown in Table 1, are as expected: TAJS only handles the benchmarks CF and

CG where the property names are known statically, and CompAbs fails to successfully analyze

any of M1, M2 or M3: M1 and M3 because the relevant read/write pair is not detected by the

syntactic patterns, and M2 because the trace partitioning mechanism does not distinguish closures

on free variables within the partitions. TAJSVR handles all seven programs precisely by the use of

demand-driven value refinement.
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Table 1. Micro-benchmarks that check how state-of-the-art analyses handle various dynamic property access
patterns. A ✗ indicates that the analysis mixes together the properties of the object being manipulated, while
a ✓✓✓ indicates that it is sufficiently precise to keep them distinct. The CF, CG, AF, and AG benchmarks are
drawn directly from [Ko et al. 2017], while M1, M2, and M3 are isolated and distilled from the read/write
patterns presented in Section 2.

Benchmark TAJS CompAbs TAJSVR

CF (for-in loop over statically known set of properties) ✓✓✓ ✓✓✓ ✓✓✓
CG (while loop over statically known set of properties) ✓✓✓ ✓✓✓ ✓✓✓
AF (for-in loop over statically unknown properties) ✗ ✓✓✓ ✓✓✓
AG (while loop over statically unknown properties) ✗ ✓✓✓ ✓✓✓
M1 (indirect field copy, distilled from 1○ in Fig. 1) ✗ ✗ ✓✓✓
M2 (field copy through closure, distilled from 2○ in Fig. 1) ✗ ✗ ✓✓✓
M3 (interprocedural field copy, distilled from 3○ in Fig. 1) ✗ ✗ ✓✓✓

Library Benchmarks. Priorwork has found that the analysis of highly dynamic, metaprogramming-

heavy libraries is a major hurdle for the analysis of realistic JavaScript programs in the wild [An-

dreasen and Møller 2014; Park and Ryu 2015; Sridharan et al. 2012]. As such, we evaluate TAJSVR

against TAJS and CompAbs on a corpus of challenging real-world library benchmarks, drawn from

the benchmark suites of past JavaScript analysis research works as well as from library unit test

suites. We selected these benchmarks to evaluate our approach on programs that other researchers

find important and to demonstrate that our approach enables the analysis of programs beyond the

reach of existing analyzers.

From past works, we analyze the jQuery tests found in Andreasen and Møller [2014], the

Prototype.js and Scriptaculous tests fromWei et al. [2016], and the test suite (excluding 7 benchmarks

that require additional modelling of Firefox add-ons) used by Kashyap et al. [2014] and Dewey et al.

[2015] (referred to collectively as “JSAI tests” henceforth).

In addition, we analyze the unit test suites for two heavily used functional utility libraries:

Underscore (v1.8.3, 1548 LoC) Lodash3 (v3.0.0, 10785 LoC), and Lodash4 (v4.17.10, 17105 LoC). The

unit tests (664 in total) provide comprehensive coverage and illustrate realistic use-cases of the

two libraries. We select Lodash and Underscore because they are the two most-depended-upon

packages in NPM
8
that do not require platform-specific modelling for Node.js and are unanalyzable

by TAJS without the use of value refinement. In total, more than 100,000 NPM packages depend on

one or both libraries (excluding transitive dependencies), so they represent a significant hurdle for

analysis of Node.js modules and applications. Both Lodash3 and Lodash4 are included since their

codebases are substantially different and they present distinct challenges for static analysis.

A summary of the results of each tool on these library benchmark is given in Table 2. We say

that a program is analyzable when analysis terminates within 5 minutes, and with dataflow to the

program exit. In our experiments, we find that increasing this time budget does not allow the tools

to successfully analyze many more tests, due to the all-or-nothing nature of dynamic language

analysis: analyzers are generally either precise enough to analyze a program quickly, or they lose

precision at some key location, leading to a proliferation of spurious dataflow that renders the

analysis results useless and cannot be recovered from regardless of time budget. This phenomenon

has also been observed by Jensen et al. [2009], Park and Ryu [2015], and Ko et al. [2017]. For some

of the tests, the CompAbs tool does terminate quickly but has no dataflow to the program exit,

which is unsound for these programs. In comparison, TAJSVR passes extensive soundness testing

as explained below.

8
At time of publication, Lodash ranks #1 and Underscore #14, per https://npmjs.com/browse/depended.
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Table 2. Analysis results for real-world benchmarks drawn from previous evaluations of JavaScript analysis
tools [Andreasen and Møller 2014; Kashyap et al. 2014; Wei et al. 2016] and additional library unit test suites.
A test is a “Success” if the analysis terminates with dataflow to the program exit within a 5 minute timeout,
and times are averaged across all successfully analyzed tests.

TAJS CompAbs TAJSVR
Benchmark Success (%) Time (s) Success (%) Time (s) Success (%) Time (s)

JQuery (71 tests) 7% 14.4 0% - 7% 17.2

JSAI tests (29 tests) 86% 12.3 34% 32.4 86% 14.3

Prototype (6 tests) 0% - 33% 23.1 83% 97.7

Scriptaculous (1 test) 0% - 100% 62.0 100% 236.9

Underscore (182 tests) 0% - 0% - 95% 2.9

Lodash3 (176 tests) 0% - 0% - 98% 5.5

Lodash4 (306 tests) 0% - 0% - 87% 24.7

Demand-driven value refinement enables TAJSVR to efficiently analyze many benchmarks that

TAJS cannot handle. The Prototype and Scriptaculous libraries are unanalyzable by TAJS, but the

relational information provided by value refinement allows TAJSVR to successfully analyze the

Scriptaculous test and five of six Prototype tests. For the tests that CompAbs can analyze, it is faster

than TAJSVR. Less than 5% of the analysis time for TAJSVR is spent performing value refinement

for those benchmarks, so refinement is not the primary reason for this difference; we believe that

the reason is rather that CompAbs uses a more precise model of the DOM, which is used heavily in

both libraries.

TAJSVR is furthermore able to analyze 92% (611/664) of the Underscore, Lodash3, and Lodash4

unit tests, none of which are analyzable by either TAJS or CompAbs, in 13 seconds on average.

This result is explained in part by the analysis behavior on the micro-benchmarks above. Since

the M1, M2, and M3 micro-benchmarks are extracted from Lodash library bootstrapping code

and neither TAJS nor CompAbs can reason precisely about them, it follows that neither tool can

precisely analyze the library test cases. The result also indicates that the relational information

provided by value refinement – and, correspondingly, TAJSVR’s ability to analyze the M1, M2, and

M3 micro-benchmarks – is integral to the precise analysis of libraries like Underscore and Lodash.

Manual triage shows that the library unit tests that TAJSVR fails to analyze are mostly due to

challenges orthogonal to dynamic property access operations. Some of the tests involve complex

string manipulations, some are caused by insufficient context sensitivity in the base dataflow

analysis, and most of the remaining ones could be handled by improving TAJS’ reasoning at

type tests in branches. Also, our value refiner fails to provide sufficiently precise answers for

approximately 0.02% of queries, as discussed in Section 7.2.

For those benchmarks that TAJS can handle without demand-driven value refinement, TAJSVR

provides similar results to TAJS, both in terms of precision and performance. Because the static

determinacy technique by Andreasen and Møller [2014] enables TAJS to analyze many of jQuery’s

dynamic property writes precisely, the jQuery test cases where TAJSVR fails are unanalyzable for

reasons unrelated to dynamic property accesses and so value refinement is rarely triggered. The

results for the JSAI tests are analogous: since TAJS can reason precisely about them without value

refinement for the most part, TAJSVR yields similar results to TAJS and never triggers refinement.

More data about the refinement queries issued for these benchmarks are presented in Section 7.2.

Overall, the results indicate that extending an analysis with demand-driven value refinement does

not add significant cost in situations where the base analysis is already sufficiently precise.
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Precision. We measure TAJSVR analysis precision with respect to type analysis and call graph

construction, following the methodology of prior JavaScript analysis works [Andreasen and Møller

2014; Park and Ryu 2015] that have established these metrics as useful proxies for precision. In

these measurements, we treat locations context-sensitively, counting the same location once per

context under which it is reachable. At each variable or property read in a program successfully

analyzed by TAJSVR, we count the number of possible types for the resulting value; in 99.48% of

cases, the value has a single unique type, and the average number of types per read is 1.009 (of

course, the actual value must be at least 1 at every read). Similarly, we measure the number of

callees per callsite, finding that 99.95% of calls have a unique callee.

For analysis of a library to be useful it is also important that the library object itself is analyzed

precisely, such that properties of the library yield precise values when referenced in client programs.

To verify that is the case, we check all methods of library objects (i.e., properties that contain

functions) in programs successfully analyzed by TAJSVR. We find that 99.44% of such methods

contain a unique function, indicating that TAJSVR successfully avoids mixing together the library

methods.

These numbers clearly demonstrate that in the situations where the critical precision losses are

avoided and the analysis terminates successfully, the analysis results are very precise. This degree

of precision may enable analysis clients such as program optimizers and verification tools; however,

developing such client tools is out of scope of this work.

Soundness Testing. To increase confidence that TAJSVR is sound, we have applied the empirical

soundness testing technique of Andreasen et al. [2017]. The technique checks whether the analysis

result overapproximates all values observed in every step of a concrete execution. For example, if

the program at some point in the execution writes the number 42 to a property of an object, then

the analysis must at that point have an abstract value that overapproximates that concrete value.

Since most of the benchmarks do not require user interaction, a single concrete execution for each

suffices to get good coverage. In total, more than 7.8 million pairs of concrete and abstract values

are tested. Only 117 of them fail, all for the same reason: one Lodash4 test uses Arrays.from in

combination with ES6 iterators, which is not fully modeled in the latest version of TAJS.

Scalability Compared to Trace Partitioning. When analyzing the initialization code of Lodash4,

TAJSVR only issues value refinement queries at the dynamic property writes in 1○ and 3○ in Fig. 1.

The precise information provided by these queries can also be gained using the trace partitioning

technique from CompAbs at the correlated reads of 1○ and 3○. To compare the scalability of

value refinement with that of trace partitioning (isolated from the choice of where to issue value

refinement queries or apply trace partitioning), we have implemented an extension of TAJS that is

hardcoded to perform trace partitioning at exactly those two reads.

TAJSVR analyzes the initialization code of Lodash4 in 19 seconds while TAJS with hardcoded

trace partitioning takes 222 seconds. This result indicates that value refinement scales better than

trace partitioning even when partitioning is applied only at the necessary locations.

7.2 Understanding the Effectiveness of the Value Refiner
Table 3 shows statistics about the value refinement queries that are issued when analyzing the

benchmark suites.
9
In summary, these results demonstrate that value refinement queries are

being triggered at only a small fraction of all the dynamic property write operations, and that

the backwards abstract interpreter described in Sections 4 and 6.1 is an effective value refiner: it

efficiently computes highly precise refinements on the base analysis state in the vast majority of

cases, often spending only a few milliseconds and visiting only a small part of the program.

9
More granular experimental results can be found in Appendix C.
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Table 3. Summary of value refinement behavior for library tests. “Ref. locs” is the total number of program
locations where refinement queries are issued out of the total number of property writes with dynamically-
computed property names; “Avg. queries” is the average number of queries issued per test; “Success” is the
percentage of queries where the value refiner produces a result more precise than the base analysis state for
the requested memory address; “Refiner time” is the percentage of the total analysis time spent by the value
refiner; “Avg. query time” is the average time spent by the value refiner on each query; “Avg. locs visited”
is the average number of program locations visited in each invocation of the value refiner; “Inter.” is the
percentage of the queries where the value refiner visits multiple functions; and “PNI” is the percentage of
queries where the value refiner uses property name inference (Section 5.3).

Ref.

locs

Avg.

queries

Success

(%)

Refiner

time (%)

Avg. query

time (ms)

Avg. locs

visited

Inter.

(%)

PNI

(%)

JQuery (71 tests) 5 / 138 1.13 87.5 0.1 13.57 7.1 2.86 90.00

JSAI tests (29 tests) 0 / 2705 - - - - - - -

Prototype (6 tests) 4 / 69 188.17 100.0 2.5 13.08 39.98 48.10 97.61

Scriptaculous (1 test) 2 / 92 601.00 100.0 3.4 13.21 36.91 42.26 99.33

Underscore (182 tests) 5 / 32 267.84 99.98 22.4 2.43 5.05 0.10 99.76

Lodash3 (176 tests) 12 / 132 475.28 99.99 47.2 5.46 10.47 40.22 99.90

Lodash4 (306 tests) 7 / 123 1284.04 99.97 52.0 10.01 10.09 25.75 99.67

Semantic Triggers for Refinement. Value refinement is triggered (meaning that the first case in the

definition of the modified transfer function T VR
ℓ→s ℓ′

applies) at a total of only 35 program locations

across the 7 benchmark groups. This is a low number compared to the sizes of the benchmarks

(which contain a total 3291 property writes with dynamically computed property names), but as we

have seen in Section 7.1, adequate relational precision at those 35 locations is critical for successful

analysis of library clients.

The value refiner is invoked many times for the benchmarks that TAJS cannot analyze without

refinement but quite rarely in the benchmarks (JSAI and JQuery) that TAJS can handle alone.

As discussed in Section 7.1, this is because we trigger refinement semantically only at imprecise

dynamic property writes, but TAJS has sufficient precision to avoid imprecise writes without

applying refinement in some benchmarks. As for the large number of refinement queries for the

other benchmarks, recall that each computation of T VR
ℓ→s ℓ′

issues multiple refinement queries for

the same memory locations under different constraints.

Effectiveness of Backwards Abstract Interpretation. The table shows that over 99% of refinement

queries are successful, in the sense that the value refiner computes a more precise abstract value for

the queried memory location than the base analysis alone. Each invocation of the value refiner is

limited to 2 seconds, and all unsuccessful queries reported in Table 3 are due to this timeout. Even

though we invoke the value refiner often, in most cases less than half of the total analysis time is

spent performing value refinement, and that fraction of time only exceeds 4% for the Underscore and

Lodash experiments. This low performance cost of refinement is due to the fact that most queries

are answered in a few milliseconds and only require the backwards analysis to visit quite few

program locations: the average for every one of the seven benchmark groups is below 40 locations,

even in programs containing thousands of lines of code. This indicates that the “goal-directed”

nature of the backwards abstract interpreter – the fact that it reasons only about the portion of the

heap relevant to the query at hand and traverses only the subset of the control-flow graph needed

to answer that query – is integral to its effectiveness. Still, many queries require interprocedural

reasoning, especially for Lodash, Prototype, and Scriptaculous.
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We additionally observe that property name inference (the mechanism described in Section 5.3,

in which we leverage the abstract states of the base analysis when performing value refinement) is

used by almost all queries. That mechanism is not only used often by TAJSVR, it is essential to its

success; an extra experiment shows that if we disable property name inference, then TAJSVR fails

on all of the same tests as TAJS in Table 2.

A manual investigation has shown that in situations where the value refiner fails to provide pre-

cise results, the relevant code does not require relational information between the property name in

thewrite and the value to bewritten. A typical example is the code snippet result[pad + h[hIndex]]

= args[argsIndex++] from Lodash3. Since there is no relation between hIndex and argsIndex, the

value refinement mechanism is unable to precisely resolve the dynamic property write operation

and the value being written. Conversely, when the refinement does hinge on relational information,

the value refiner is precise and effective in solving the queries.

8 RELATEDWORK
There is a wealth of research on techniques for static analysis of JavaScript applications, much of

which has focused on the development of general analysis frameworks such as TAJS [Jensen et al.

2009], SAFE [Lee et al. 2012], WALA [IBM Research 2018], and JSAI [Kashyap et al. 2014].

Notably, much recent work has focused on improving analysis precision with various algorithmic

innovations. The static determinacy technique by Andreasen and Møller [2014] and the loop-

sensitive analysis by Park and Ryu [2015] both employ specialized context-sensitivity policies to

achieve greater precision, especially in loop bodies and for free variables in closures. The correlation

tracking points-to analysis by Sridharan et al. [2012] and the composite abstraction by Ko et al.

[2017, 2019] target the dynamic behaviors exhibited by particularly troublesome syntactic patterns

and apply extra precision wherever those syntactic patterns are detected.

All of the JavaScript analysis tools mentioned above are whole-program analyzers, while suc-

cessful analyses for other languages typically achieve scalability by modularity. For dynamic

programming languages like JavaScript, it is hard to achieve modularity without involving complex

specifications of the program components. Moreover, even a modular analysis inevitably has to

reason about the extremely difficult pieces of code that exist in libraries like those studied in this

paper.

Other researchers have developed abstractions to better model JavaScript’s idiosyncratic heap

semantics. Cox et al. [2014] have introduced a complex relational abstraction to reason more

precisely and efficiently about open objects, and Gardner et al. [2012] and Santos et al. [2018, 2019]

have designed a separation logic-based program logic and verification engine to succinctly express

and verify heap properties. These approaches are modular but require complex, manually provided

specifications, whereas TAJSVR is fully automatic.

In the area of demand-driven and refinement analysis, much of the prior work has targeted

pointer analyses for languages like Java [Guyer and Lin 2005; Liang and Naik 2011; Späth et al.

2016; Sridharan and Bodík 2006]. These works each employ some form of abstraction refinement

to increase analysis precision as needed, successively tightening their overapproximations of the

forward concrete semantics. Similarly, the technique by Gulavani and Rajamani [2006] symbolically

propagates error conditions backwards to generate hints for choosing between joining or widening

in a finite powerset domain. Like standard counterexample-guided abstraction-refinement [Ball

and Rajamani 2001; Clarke et al. 2000; Henzinger et al. 2002], these techniques alternate between

deriving counterexamples and restarting the fixpoint analysis with a refined abstraction. In contrast,

our approach interleaves refinement queries within a single fixpoint analysis and refines the abstract

values instead of the analysis abstraction.
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Several recent techniques use refutation sound backwards analyses for refinement. For example,

Blackshear et al. [2013] use a backwards abstract interpreter to refute false alarms from a base

pointer analysis, and Cousot et al. [2011] infer preconditions by backwards symbolic propagation

of program assertions. These works are distinct from the well-known backward techniques for

weakest-precondition analysis [Chandra et al. 2009; Flanagan et al. 2002; Manevich et al. 2004],

which are underapproximate and use a forward soundness condition that is dual to refutation

soundness (as described in Section 5.2). See also Ball et al. [2005] for a more detailed treatment

of these distinct soundness properties; in their terminology, the forwards soundness condition

corresponds to a must+ transition while refutation soundness corresponds to a must− transition.
Our work is most similar to that of Blackshear et al. [2013], but generalizes their technique in

several ways. Whereas their tool is used after-the-fact for alarm triage only, our demand-driven

analysis runs during the execution of the base analysis; we generalize from boolean refutation

queries of the form “is this abstract state reachable?” to value refinement queries of the form “which

values can this memory location hold at this abstract state?”; and we extend their technique from

Java to JavaScript, where dynamic property access introduces significant new analysis challenges

for the value refiner.

Combining separate static analyses has also been the subject of much research, going back to

the introduction of the reduced product abstract domain by Cousot and Cousot [1979]. Much of the

recent work on combinations of analyses has similarly focused on combining abstract domains

while leaving the analysis algorithm itself largely unchanged, essentially composing analyses in

parallel [Chang and Leino 2005; Cousot et al. 2006; Lerner et al. 2002; Toubhans et al. 2013]. Other

works have composed analyses in series, for example to guide context-sensitivity policies using a

pre-analysis [Oh et al. 2016] or to filter spurious alarms from a coarse whole-program analysis with

a targeted refutation analysis [Blackshear et al. 2013]. Our framework, in which a forward analysis

communicates and interleaves with a backward analysis that is triggered on demand when high

precision is needed, cannot easily be expressed within these existing formalisms for combining

abstract domains or sequencing analyses.

9 CONCLUSION
We have presented a novel program analysis mechanism, demand-driven value refinement, and
shown how it can be used to soundly regain lost precision during the execution of a dataflow

analysis for JavaScript programs. The mechanism is particularly effective at providing precise

relational information, even when the base dataflow analysis employs a non-relational abstract

domain.

In experiments using our implementation TAJSVR, we have demonstrated that demand-driven

value refinement is more effective than a state-of-the-art alternative technique that relies on

syntactic patterns and trace partitioning, when analyzing widely used JavaScript libraries. These

results suggest that demand-driven value refinement is a promising step towards fast and precise

static analysis for real-world JavaScript programs.
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A SOUNDNESS OF DEMAND-DRIVEN VALUE REFINEMENT
First, we argue that the base analysis remains sound when switching to the modified transfer

functions T VR
ℓ→s ℓ′

using R, provided that R is sound. Second, we extend this result from R to RX .

First, note that if R(ℓ,y, z 7→ ẑ) always returns σ̂ (y), then the definition of T VR
ℓ→s ℓ′

yields a node

transfer function that is equivalent to the original one Tℓ→s ℓ′ . Therefore, T
VR
ℓ→s ℓ′

is sound provided

that it is sound to use an actual refiner, instead of one always returning σ̂ (y).
Since R is sound by assumption, we have – per the definition of refiner soundness in Section 4.1 –

that for every state σ ∈ [[ℓ]]⟨ℓ0,T ⟩ where ℓ is a location in the program ⟨ℓ0,T ⟩ and the abstraction of σ
satisfies the constraint z 7→ ẑ, the value σy is in the concretization of an abstract value in R(ℓ,y, z 7→
ẑ) for any y. That is, the refinement result over-approximates the possible concrete values of y at

ℓ under the given constraint. As such, so long as the partitioning Part(σ̂z) overapproximates z,
V (σ̂ , ℓ,y, z,p) overapproximates the possible values written to m̂ and the base analysis therefore

remains sound.

On the other hand, if the base analysis receives new dataflow that invalidates the partitioning

(i.e., such that σ̂z is no longer covered by the partitioning) at ℓ, then V (σ̂ , ℓ,y, z,p) may not be

overapproximate. However the dataflow update at ℓ causes the refinement to rerun with a new

partitioning that does cover the new σ̂z.
All such new dataflow will eventually be processed, so eventually the partitioning Part(σ̂z) will

overapproximate z at ℓ. Thus, from trace partitioning, the refinement result is sound with respect

to the collecting semantics and V (σ̂ , ℓ,y, z,p) therefore bounds the possible value written to m̂.

We will now extend this to show that it is sound to use RX instead of R, meaning that the value

refiner can use dataflow facts from the base analysis.

Note that, by the definition of RX soundness in Section 4.3, RX overapproximates the full

collecting semantics when the base analysis has abstracted all traces. As such, soundness with RX
follows from soundness with R once the base analysis has abstracted all traces. Therefore, we only

need to argue the case where the base analysis issues a refinement query at ℓr , RX accesses the

base analysis’ state at ℓd , and there exists a concrete trace ℓ0 →s1 · · · →sd ℓd → · · · →sr ℓr .
If all partial concrete traces to ℓd are abstracted by the base analysis state (as defined in Section 4.3),

then the abstract state read at ℓd overapproximates the possible concrete states at ℓd and the

refinement result is sound. Otherwise, there exists a trace ℓ0 →s1 · · · →sd ℓd , that is not yet
abstracted by the base analysis. When this trace gets abstracted by the base analysis, we will have

new dataflow at ℓd . At that point, ℓr will be added to the worklist due to the updated worklist

dependency map of Section 4.3. That is, ℓr will always be re-added to the worklist if a dataflow fact

it depended on was from a not-yet-overapproximating base analysis state.

Thus, in the final transfer function execution at ℓr , all the dataflow facts used by the value refiner

will be overapproximate with respect to the collecting semantics. Therefore, the refinement result

is overapproximate as well by refiner soundness, so V (σ̂ , ℓ,y, z,p) bounds the possible concrete
values written to m̂ and the base analysis therefore remains sound when using the modified transfer

functions T VR
ℓ→s ℓ′

and the refiner RX .

B SOUNDNESS OF THE VALUE REFINER R←

Let us write v |= v̂ for v being in the concretization of v̂ . Then, following the definition of refiner

soundness given in Section 4, it suffices to show, for all variables x , program locations ℓ, and
constraints y 7→ v̂ , that if a concrete state σ such that σy |= v̂ is in the collecting semantics

[[ℓ]]⟨ℓ0,T ⟩ , then there exists a corresponding û in the refinement R←(ℓ,x ,y 7→ v̂) such that σx |= û.
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Take any ℓ, x , y 7→ v̂ , and σ , supposing that σy |= v̂ and σ ∈ [[ℓ]]⟨ℓ0,T ⟩ . Since σ is in the concrete

semantics at ℓ, there exists a trace leading to that state: ℓ0 →s0 ℓ1 , . . . , ℓn →sn ℓ ∈ T
∗
where

([[sn]] ◦ [[sn−1]] ◦ · · · ◦ [[s0]])(ε) = σ .
Let φ be the initial abstract store given in the definition of R←. That is, let φ = x 7→ res ∗ y 7→

ŷ ∧ ŷ = v̂ . Note that, by construction, there exists (σ ,η) ∈ γφ such that η(res) = σx .
Let φi be the symbolic store computed at ℓi by the fixpoint algorithm. By refutation soundness,

it must be the case that ⟨φn⟩sn ⟨φ⟩, ⟨φn−1⟩sn−1⟨φn⟩, and so on through ⟨φ0⟩s0⟨φ1⟩.

Transitively applying the refutation soundness property for each of these triples yields the

implication (σ ,η) ∈ γφ ⇒ (ε,η) ∈ γφ0. Therefore, there exists (ε,η) ∈ γφ0 with η(res) = σx .

Therefore, the upper bound

⊔
(σ ,η)∈γ (φ0)

β(η(res)) (where β : Val→ V̂al denotes value abstrac-

tion) on the value of res that is computed for the symbolic store φ0 overapproximates σx and thus

the value refinement R←(ℓ,x ,y 7→ û) soundly overapproximates σx .

C SUPPLEMENTARY EXPERIMENTAL DATA
Table 3 presented accumulated statistics for all of the refinement queries performed during the

analysis of the library benchmarks. In this section, we provide more granular details about the

individual refinement locations. We have manually investigated all of the program locations where

refinement queries are issued and categorized them into one of the following categories:

(1) Intraprocedural correlated read/write pattern

(2) Interprocedural correlated read/write pattern

(3) No correlated read/write pattern

(4) Dataflow through free variable

In addition, we make note of two other meaningful characteristics of refinement locations:

a. Transformation of the read, e.g. target[key] = f(source[key])

b. Conditional property write

The numbered categories 1, 2, and 3 indicate whether a correlated read/write is present and, if

so, whether it spans a procedure boundary. Category 4 indicates that the memory location being

refined is a free variable in the function where refinement is triggered.

The lettered categories describe extra characteristics about the property read/write patterns: “a”

patterns transform the read property value before writing it, and “b” patterns perform the property

write conditionally only when a predicate is satisfied.

A particular refinement location belongs to one of the numbered categories and any number of

the lettered categories.
10

The results of the investigation are shown for Underscore, Lodash3, Lodash4, Prototype, Scrip-

taculous, and jQuery in tables 4, 5, 6, 7, 8, and 9 respectively.

The tables each have the same structure and provide the following information: “Ref. loc” is

the source location in the program where refinement queries are issued, written as “line:column”;

“Queries” is the total number of refinement queries issued; “Success” is the percentage of queries

where the value refiner produces a result more precise than the base analysis state for the requested

memory address; “Avg. time” is the average time spent by the value refiner on each query; “Avg. locs”

is the average number of program locations visited per refinement query; “Inter.” is the percentage

of the queries where the value refiner visits multiple functions; “PNI” is the percentage of queries

where the value refiner applies property name inference (see Section 5.3); “Test cases” is the number

10
With the exception of the locations categorized “2 or 3”, where the categorization depends on the invocation context of

the containing function, as described below.
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Ref. loc Queries Success (%) Avg. time (ms) Avg. locs Inter. (%) PNI (%) Test cases Category

1492:18 48412 100.0 2 5 0.0 100.0 182 1

1493:7 114 100.0 9 9 0.0 0.0 25 1

22:9 24 87.5 30 13 4.8 95.2 1 1

1037:38 56 85.7 13 39 100.0 100.0 2 1, b

108:54 141 100.0 1 5 0.0 100.0 11 1

Table 4. Statistics for all refinement queries issued in the 182 Underscore test cases.

of test cases that issue refinement queries; and “Category” is a categorization of the refinement

location as defined above.

In total, the refiner fails to provide precise results at seven locations, where four of them do

not belong to a correlated property read/write. However, 24 of the 35 refinement locations are in

correlated property read/write pairs (i.e. categories 1 and 2), indicating that such patterns are often

a reason for loss of precision by the base analysis. Of the 24 correlated property read/writes, we

see that 19 are intraprocedural and 5 are interprocedural.

Note that, for the two locations in Table 6 categorized as “2 or 3”, the categorization depends

on the invocation context of the function containing the refinement location. In our experiments,

most of the refinement queries at locations 2002:7 and 2573:9 are issued in correlated read/write

contexts (i.e. in category 2).

The tables also show that the refiner almost always provides precise results when analyzing

correlated property read/write patterns, whether those patterns are intraprocedural or interproce-

dural. We also see that property name inference is used in most cases. As such, the refinements

also depend on the precision of the current analysis state; for instance, at Lodash3 location 2388:9,

we see that they succeed for most but not all refinements. The failing refinements are issued in the

same test case as the location 2358:11 refinement. Since the value refiner fails to precisely refine at

2358:11, imprecision is introduced to the analysis state which is propagated to 2388:9, meaning that

the base analysis state is not precise enough to perform property name inference. The refinement

at line 2386:9 fails for the same reason. For some of the other cases where refinements is sometimes

but not always successful, it is typically because the refinements at that location are highly variable.

For instance, category “a” and “b” locations often require reasoning about a callback function that

is provided in the test case, so successful refinement depends heavily on whether the refiner is able

to reason precisely about that function.

The tables also show that most successful refinements happen quite close to the refinement

location. The refinement that visited the most locations visited 161 locations on average, and most

refinements involved visiting less than 50 locations. This demonstrates that the loss of precision is

often proximate to the critical imprecise property write. However, even though most refinements

visit relatively few locations, 18 of the 35 refinement locations nonetheless require interprocedural

reasoning.
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Ref. loc Queries Success (%) Avg. time (ms) Avg. locs Inter. (%) PNI (%) Test cases Category

10682:7 16 100.0 4 18 100.0 0.0 8 4

2358:11 2 0.0 - - 0 0 1 3

3739:11 2 0.0 - - 0 0 1 2, b

10540:11 32800 100.0 8 15 100.0 100.0 176 2

10084:9 49781 100.0 3 7 0.0 100.0 176 1

3720:11 217 99.1 25 5 0.0 100.0 2 1

2331:11 41 100.0 50 67 100.0 4.9 1 1, a, b

10086:11 28 100.0 7 18 100.0 0.0 8 4

2388:9 6 66.7 39 75 100.0 0.0 1 1, a

2386:9 2 0.0 - - 0 0 1 1, a

1547:11 752 100.0 14 40 100.0 100.0 2 1, a, b

2827:9 2 0.0 - - 0 0 1 3

Table 5. Statistics for all refinement queries issued in the 176 Lodash3 test cases.

Ref. loc Queries Success (%) Avg. time (ms) Avg. locs Inter. (%) PNI (%) Test cases Category

15702:9 291417 100.0 5 7 0.0 100.0 306 1

16840:11 99498 100.0 8 17 100.0 100.0 306 2

2573:9 500 89.6 361 97 100.0 97.1 14 2 or 3

15704:11 84 100.0 51 14 0.0 0.0 10 4

16983:7 45 97.8 32 40 100.0 0.0 12 4

2002:7 1209 94.7 1229 161 100.0 0.0 16 2 or 3

12808:13 164 100.0 4 5 0.0 100.0 1 1

Table 6. Statistics for all refinement queries issued in the 306 Lodash4 test cases.

Ref. loc Queries Success (%) Avg. time (ms) Avg. locs Inter. (%) PNI (%) Test cases Category

145:7 1102 100.0 13 40 46.8 100.0 6 1

7155:5 13 100.0 3 5 100.0 0.0 6 4

7157:5 4 100.0 4 5 100.0 0.0 3 4

3380:9 10 100.0 3 5 100.0 0.0 3 1, a

Table 7. Statistics for all refinement queries issued in the 6 Prototype test cases.

Ref. loc Queries Success (%) Avg. time (ms) Avg. locs Inter. (%) PNI (%) Test cases Category

145:7 597 100.0 13 37 41.9 100.0 1 1

7155:5 4 100.0 4 5 100.0 0.0 1 4

Table 8. Statistics for all refinement queries issued in the Scriptaculous test case.

Ref. loc Queries Success (%) Avg. time (ms) Avg. locs Inter. (%) PNI (%) Test cases Category

368:6 8 87.5 85 26 0.0 0.0 8 1

8369:4 5 0.0 - - 0 0 5 1, a

5188:4 2 0.0 - - 100.0 0.0 1 3

5200:4 63 100.0 5 5 0.0 100.0 1 1

3650:3 2 0.0 - - 0 0 1 3

Table 9. Statistics for all refinement queries issued in the JQuery test cases.
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